

Reference Design Automotive

Title	General Purpose Automotive Gate Driver Board for SCALE-iDriver [™] SIC1182KQ with on-board power supply using InnoSwitch [™] 3-AQ INN3947CQ
Application	1200V TO-247-4L power devices (IGBT/ SiC-MOSFET) in half-bridge topology
Document Number	RDHP-2254Q
Author	System Engineering Automotive
Date	15-Jun-23
Revision	1.0

Feature Set

- Designed for 800 V_{DC} BEV automotive applications
- Low component count design
- Ambient operating temperature from -40°C to 105°C
- Reinforced isolation between high and low voltage domains (IEC-60664-1 and IEC-60664-4 compliant)
- Uses automotive qualified AEC-Q surface mount (SMD) components¹
- SIC1182KQ specific features:
 - ±8A gate drive current
 - Ultrafast Short-circuit monitoring
 - AROC for transient overvoltage limitation
 - UVLO protection for primary and secondary-side
 - o SO Fault signaling
- INN3947CQ specific features:
 - o Regulated output voltage of 5V
 - Total output power of 10W
 - ≥80 % efficiency across input voltage range at T_a = 25°C
 - Fully fault protected including output current limit and short-circuit protection

¹ AEC-Q200 transformer and input common mode choke qualification belongs to final design

Table	of	Con	tents
-------	----	-----	-------

Disclaimer:		2
1 Introduc	tion	5
2 Design 9	Specification	6
2.1 Elec	trical Specification	6
2.1.1	Power Supply Unit – INN3947CQ	6
2.1.2	Gate Drive Unit – SIC1182KQ	7
2.2 Isol	ation Coordination	
2.3 Env	rironmental Specification	7
	tic	
4 PCB Lay	out	.11
5 PCB 3D	Image	.12
6 Board A	ssembly	.13
7 Bill of M	aterials	.14
8 Test Set	tup	.16
	ement Equipment	
	mer Specification	
10.1 Inn	oSwitch3-AQ Transformer (T350)	
10.1.1	Electrical Diagram of InnoSwitch3-AQ Transformer	
10.1.2	Electrical Specification of InnoSwitch3-AQ Transformer	
10.1.3	Build Diagram of InnoSwitch3-AQ Transformer	
10.1.4	Materials List of InnoSwitch3-AQ Transformer	
10.1.5	Winding Instructions of InnoSwitch3-AQ Transformer	
10.2 SCA	ALE-iDriver Transformer (T300 and T301)	
10.2.1	Electrical Diagram of SCALE-iDriver Transformer	
10.2.2	Electrical Specification of SCALE-iDriver Transformer	.25
10.2.3	Build Diagram of SCALE-iDriver Transformer	
10.2.4	Materials List of SCALE-iDriver Transformer	
10.2.5	SCALE-iDriver Transformer	
	tch3-AQ INN3947CQ Test Data	
	ciency of InnoSwitch3-AQ	
	Efficiency vs. Output Power at T _a = 25°C	
11.1.2	, , , , , , , , , , , , , , , , , , , ,	
	d Regulation of InnoSwitch3-AQ	.28
11.2.1	Load Regulation vs. Output Power at $T_a = 25$ °C	.28
11.2.2	Output Voltage Regulation vs. Output Power at T _a = 105°C	.28
	veforms of InnoSwitch3-AQ	.29
11.3.1	Steady-State Waveforms- Normal Operation Component Stress	
11.3.2	Steady-State Waveforms- Short Circuit Response of InnoSwitch3-AQ	
11.3.3	Steady-State Waveforms- Output Voltage Ripple of InnoSwitch3-AQ	
11.3.4	Steady-State Waveforms- Output Load Transient Response of InnoSwitch	
AQ		.38
11.3.5	Start-Wp Waveforms- Start-up Full Load Response of InnoSwitch3-AQ	
11.3.6	Start-Up Waveforms- Start-Up Short Response of InnoSwitch3-AQ	.46

12 Thermals of InnoSwitch3-AQ	49
12.1 Thermal Data at T _a = 25°C	
12.2 Thermal Data at T _a = 105°C	50
13 SCALE-iDriver SIC1182KQ Test Data	
13.1 General Conditions / Remarks	
13.2 Secondary Side Gate Driver Settings	
13.3 Equivalent Half-bridge Circuit for High Voltage Testing	
13.4 DC/DC Converter of Gate Drive Unit (GDU)	53
13.4.1 Efficiency and Voltage Output of DC/DC Converter of	GDU53
13.5 High Voltage Double Pulse Tests of Half-Bridge	54
13.5.1 Testing at Tj = 25 °C	
13.5.2 Testing at Tj = 125 °C	61
13.6 High Voltage Short Circuit Tests of Half-Bridge	
13.6.1 Testing at Tj = 25 °C	
13.6.2 Testing at Tj = 125 °C	69
14 Revision History	

Disclaimer:

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein.

No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations, or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

1 Introduction

This document provides a detailed report on the results of tests performed on RDHP-2254Q as a gate drive board for onsemi's NVH4L020N120SC1 SiC MOSFET.

RDHP-2254Q is an automotive reference design board which features Power Integrations' SIC1182KQ SCALE-iDriverTM and INN3947CQ InnoSwitchTM3-AQ. This board is intended for driving two power devices (i.e., SiC-MOSFET/ IGBT) in a half-bridge configuration, each with a blocking voltage up to 1200 V and device package of TO-247-4L. Additionally, a built-in flyback converter is available to function as the main DC/DC converter for supplying the primary-side voltage directly from the high voltage input.

The goal of this test is to demonstrate the functionality of INN3947CQ as a flyback controller for the main DC/DC converter and to showcase the suitability of SIC1182KQ gate driver IC in safely turning on/off 1200 V power device during normal operation and short circuit condition. This is to enable potential end customers to evaluate Power Integrations' gate driver and power supply solutions for automotive applications.

Included in this document are the design specifications, schematic diagram, bill of materials (BOM), magnetics documentation, printed circuit board (PCB) layout and performance data.

Figure 1 - Populated Circuit Board of RDHP-2254Q

2 **Design Specification**

The table below represents the minimum acceptable performance of the design. The actual performance of the design is listed in the results section.

2.1 Electrical Specification

2.1.1 Power Supply Unit – INN3947CQ

Description	Symbol	Min.	Тур.	Max.	Units
Low Voltage (LV) Side					
LV-side IC supply voltage referenced to GND for top and bottom channel driver	V _{VCC1} V _{VCC2}	4.75	5.00	5.25	V _{DC}
LV-side IC current consumption for top and bottom channel driver ($f_{SW} = 75 \text{ kHz}$)	I _{VCC1} I _{VCC2}		25	35	mA
LV-side total power consumption of both channels ($f_{SW} = 75 \text{ kHz}$)	P _{VCC} , TOTAL		250		mW
LV-side PWM command input referenced to GND for top and bottom channel driver	IN1 IN2	GND		5	V_{DC}
LV-side fault feedback referenced to GND for top and bottom channel driver	SO1 SO2	GND		5	
Primary-side reference ground	GND		0		V_{DC}
PWM command operating switching frequency	f _{sw}	5		75	kHz
High Voltage (HV) Side					
HV-side IC supply voltage referenced to $V_{\text{COM1}}/V_{\text{COM2}}$ for top and bottom channel driver	V_{VISO1} - V_{COM1} V_{VISO2} - V_{COM2}	18.00	20.00	21.00	V _{DC}
HV-side positive supply voltage referenced to $V_{\text{VEE1}}/V_{\text{VEE2}}$ for top and bottom channel driver	V _{VISO1} V _{VISO2}		15.00		V_{DC}
HV-side negative supply voltage referenced to V_{VEE1}/V_{VEE2} for top and bottom channel driver	V _{COM1} V _{COM2}	-3.00	-5.00	-6.00	V_{DC}
HV-side IC current consumption for top and bottom channel driver ($f_{SW} = 75 \text{ kHz}$)	$I_{ ext{VISO1}}$ $I_{ ext{VISO2}}$		11	14	mA
HV-side supply power consumption per channel $(f_{SW} = 75 \text{ kHz})$	P _{VISO1} P _{VISO2}		220		mW
Gate power approximation for driving NVH4L020N120SC1 SiC MOSFET $(\Delta V = 20 \text{ V, } f_{SW} = 75 \text{ kHz, } Q_g \approx 170 \text{ nC})$	P _{GATE1} P _{GATE2}		255		mW
HV-side total power consumption of both channels $[(P_{VISO1} + P_{GATE1}) + (P_{VISO2} + P_{GATE2})]$	P _{VISO} , TOTAL		950		mW

Table 1 – Gate Drive Unit Electrical Requirements.

2.1.2 Gate Drive Unit – SIC1182KQ

Description	Symbol	Min.	Тур.	Max.	Units
High Voltage (HV) Side					
Positive DC Link input voltage referenced to HV-	HV+	200	800	850	V_{DC}
InnoSwitch switching frequency	f _{sw,INNO}	28	34	35	kHz
Low Voltage (HV) Side / 5V Output					
Output voltage	V _{OUT}	4.75	5	5.25	V_{DC}
Load and line regulation	V_{REG}	-5		+5	V_{DC}
Output ripple measured on board	V_{RIPPLE}		100		mV
Output overshoot and undershoot	ΔV_{OUT}	-5		+5	%
Output current	I _{OUT}		2		Α
Continuous output power	Pout		10 ²		W

Table 2 – Power Supply Unit Electrical Requirements.

2.2 Isolation Coordination

Description	Symbol	Min.	Тур.	Max.	Units
Maximum blocking voltage of INN3947CQ	BV _{DSS}			1700	V
Maximum blocking voltage of NVH4L020N120SC1 SiC MOSFET	$V_{DS,max}$			1200	V
Working voltage	$V_{WORKING}$			850	V
System voltage	V _{PK} , SYSTEM			850	V
Rated impulse voltage	$V_{IMPULSE}$			2.5	kV
Comparative Tracking Index of FR4	CTI	175		399	
Pollution Degree	PD			2	
Altitude correction factor for ha	Cha			1.29	
Technical cleanliness				1.0	mm
Basic clearance distance requirement	CLR _{BASIC}	3.0			mm
Reinforced clearance distance requirement	CLR _{REINFORCED}	4.9			mm
Basic creepage distance requirement	CPG _{BASIC}	5.8			mm
Reinforced creepage distance requirement	CPGREINFORCED	9.5			mm
Isolation test voltage between low and high voltage side for 60s	V _{ISO}			2500	V _{PK}
Partial Discharge test voltage	$V_{\text{PD_TEST}}$			1800	V_{PK}

Table 3 – Isolation Requirements.

2.3 Environmental Specification

<u>-</u>					
Description	Symbol	Min.	Тур.	Max.	Units
Ambient Temperature	Ta	-40		105	V
Altitude of Operation	h _a			4000	m

Table 4 – Power Supply Unit Electrical Requirements.

² 2W of power shall be allocated to the Gate Drive Unit. The remaining 8W can be used to power up external circuits.

3 Schematic

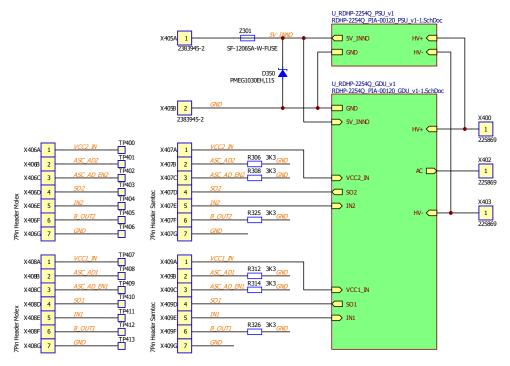


Figure 2 – Circuit Schematic Block Diagram.

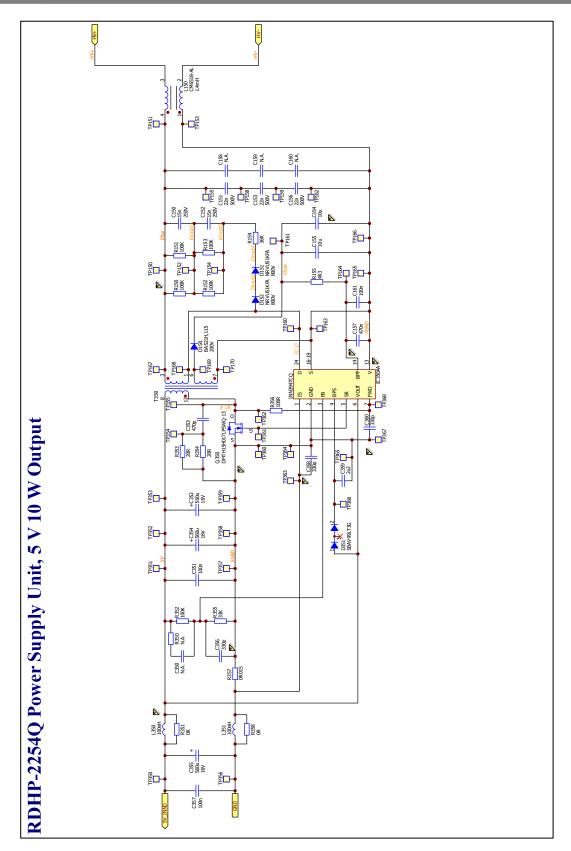
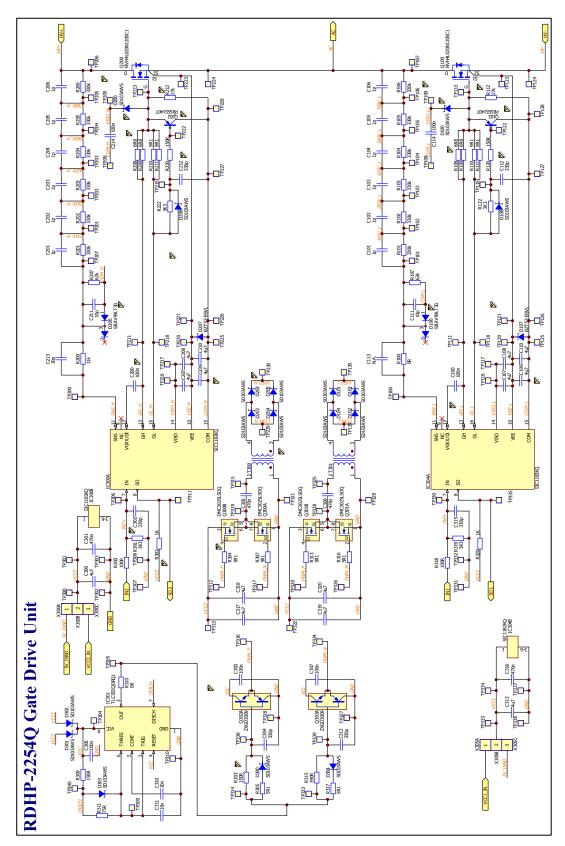
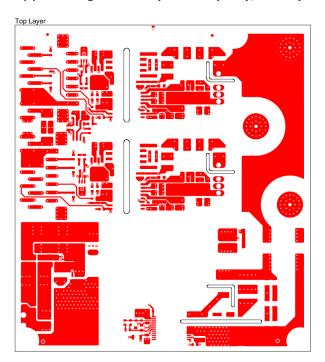
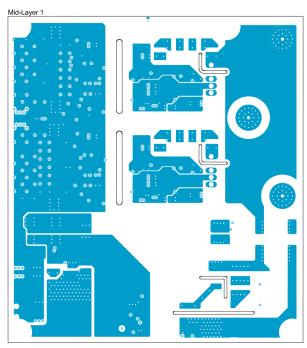
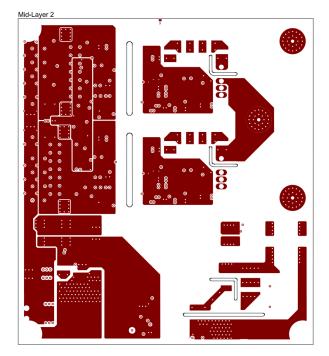


Figure 3 – Power Supply Unit Schematic Diagram (InnoSwitch).




Figure 4 – Gate Drive Unit Schematic Diagram (SCALE-iDriver).


4 PCB Layout


Layers: Six (6) (typical for traction inverter control board)

Board Material: FR4 Board Thickness: 2 mm

Copper Weight: 3 oz (outer layers), 2 oz (inner layers)

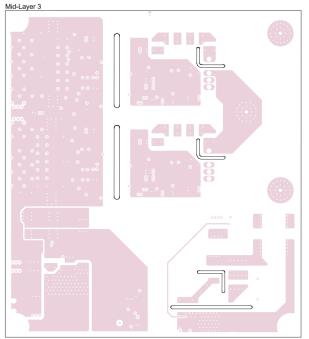


Figure 5 - RDHP-2254Q PCB Layout

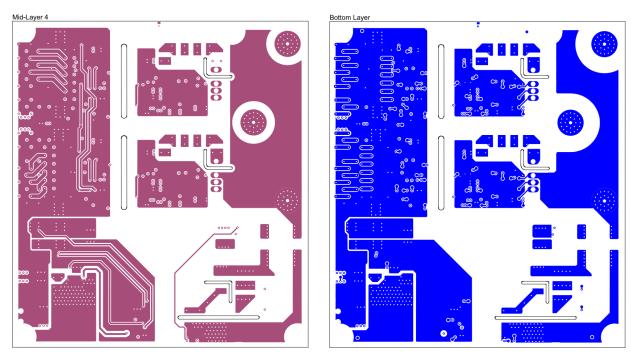


Figure 6 - RDHP-2254Q PCB Layout

5 **PCB 3D Image**

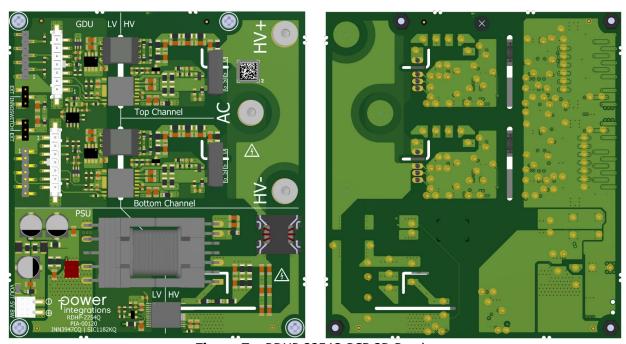
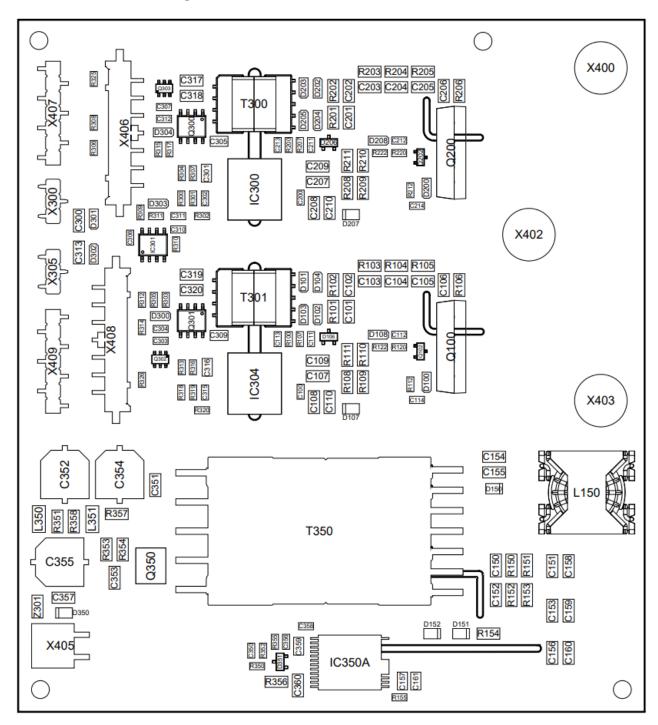



Figure 7 - RDHP-2254Q PCB 3D Render

Board Assembly

Figure 8 – Board Assembly.

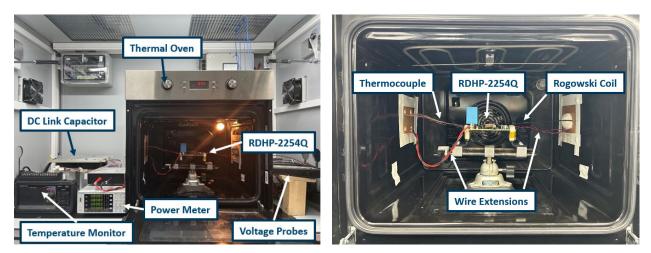
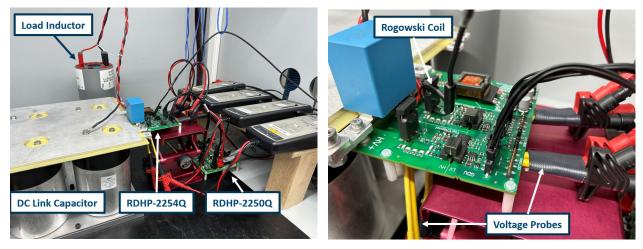
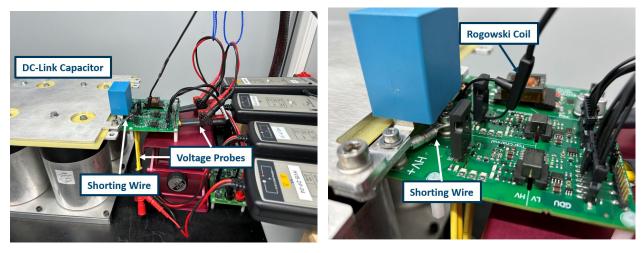
7 Bill of Materials

Item	Qty	Designator	Value	MFR Part Number	Manufacturer
1	7	C100, C114, C200, C214, C303, C306, C307	100n	CL10B104KB8WPNC	Samsung Electro-Mechanics
2	12	C101, C102, C103, C104, C105, C106, C201, C202, C203, C204, C205, C206	1p	GA1206D1R0BXLAT31M	Vishay
3	14	C107, C108, C109, C110, C207, C208, C209, C210, C300, C313, C317, C318, C319, C320	4u7	C1206X475K5RACAUTO	KEMET
4	3	C111, C211, C213	10p	CL10C100CB81PNC	Samsung Electro-Mechanics
5	6	C112, C212, C302, C304, C312, C315	330p	CL10C331JB81PNC	Samsung Electro-Mechanics
6	1	C113	N.A.		
7	2	C150, C152	15n	C1206C153KARECAUTO	KEMET
8	3	C151, C153, C156	22n	C1206C223KCRACAUTO	KEMET
9	2	C154, C155	10u	CL31B106KAHVPNE	Samsung Electro-Mechanics
10	5	C157, C301, C305, C309, C316	470n	AC0805KKX7R7BB474	YAGEO
11	3	C158, C159, C160	N.A.		
12	1	C161	100n	CGA4J2X7R1H104M125AE	TDK Corporation
13	2	C310, C311	10n	C0603C103M5RACAUTO	KEMET
14	1	C350	N.A.		
15	2	C351, C357	100n	C1206C104K4RACAUTO	KEMET
16	3	C352, C354, C355	560u	PCR1C561MCL1GS	Nichicon
17	1	C353	470p	AC1206JRNPOYBN471	YAGEO
18	2	C356, C358	330p	C0603C331K4RACAUTO	KEMET
19	1	C359	2u2	TMK212B7225KGHT	Taiyo Yuden
20	1	C360	330p	CGA5C4C0G2J331J060AA	TDK
21	17	D100, D101, D102, D103, D104, D108, D200, D202, D203, D204, D205, D208, D300, D301, D302, D303, D304	SD103AWS	SD103AWS-AU_R1_000A1	Panjit International Inc.
22	3	D106, D206, D351	SBAV99LT3G	SBAV99LT3G	On Semi
23	2	D107, D207	BZT52-B5V1	BZT52-B5V1	NXP
24	1	D150	BAS21H,115	BAS21H,115	Nexperia
25	2	D151, D152	NRVUS1KFA	NRVUS1KFA	On Semi
26	1	D350	PMEG1030EH,115	PMEG1030EH,115	Nexperia
27	2	IC300, IC304	SIC1182KQ	SIC1182KQ	Power Integrations
28	1	IC301	TLC555QDRQ1	TLC555QDRQ1	Texas Instruments
29	1	IC350	INN3947CQ	INN3947CQ	Power Integrations
30	1	L150	1.4mH	CM6518-AL	Coilcraft
31	2	L350, L351	100nH	NLCV32T-R10M-EFRD	TDK
32	2	Q100, Q200	NVH4L020N120SC1	NVH4L020N120SC1	ON Semicoductor
33	2	Q102, Q202	PBSS5140T	PBSS5140T,215	Nexperia
34	2	Q300, Q301	DMC3025LSDQ	DMC3025LSDQ-13	Diodes
35	2	Q302, Q303	ZXGD3009	ZXGD3009E6TA	DIODE
36 37	1	Q350	DMTH15H017LPSWQ	DMTH15H017LPSWQ-13	Diodes Incorporated
38	12	R100, R310 R101, R102, R103, R104, R105, R106, R201, R202, R203, R204, R205, R206	0R 330k	AC0603FR-070RL AC1206FR-07330KL	Yageo YAGEO
39	2	R107, R207	62k	ERJ-3GEYJ623V	Panasonic
40	4	R108, R109, R208, R209	6R8	AC1206FR-076R8L	YAGEO

	210, R111, R211	9R1	ERJ-8RQF9R1V	Panasonic
42 2 R1	112, R212	27k	AC0603JR-0727KL	YAGEO
43 4 R120, R2	220, R303, R309	150R	CRGCQ0603J150R	TE Connectivity
44 10 R308, R3	22, R301, R306, 12, R314, R319, 325, R326	3K3	CRGCQ0603J3K3	TE Connectivity
45 4 R150, R1	.51, R152, R153	100K	ESR18EZPJ104	ROHM Semiconductor
46 1	R154	36R	ERJ-8GEYJ360V	Panasonic
47 1	R155	4K3	ERJ-3GEYJ432V	Panasonic
48 1	R200	11k	ERJ-3EKF1102V	Panasonic
49 2 R3	300, R318	100R	CRGCQ0603J100R	TE Connectivity
50 2 R3	302, R320	1K	CRGCQ0603J1K0	TE Connectivity
	05, R307, R313, 316, R317	5R1	RMCF0603FT5R10	Stackpole Electronics Inc
52 1	R311	75R	AC0603FR-0775RL	YAGEO
53 1	R315	390R	ERJ-3GEYJ391V	Panasonic
54 1	R350	N.A.		
55 2 R3	351, R358	0R	AF1206JR-070RL	YAGEO
56 1	R352	100K	RMCF0603FT100K	Stackpole Electronics Inc
57 2 R3	353, R354	20R	AC1206FR-0720RL	Yageo
58 1	R355	33K	RMCF0603FT33K0	Stackpole Electronics Inc
59 1	R356	100R	RMCF1206JT100R	Stackpole Electronics Inc
60 1	R357	0R015	UCR18EVHFSR015	ROHM Semiconductor
61 2 T3	300, T301	EP7	EP7	Power Integrations
62 1	T350	EFD25-12P-SMD-10W	EFD25	Power Integrations
63 2 X3	300, X305	3Pin Header Samtec	TSM-103-01-S-SV	Samtec
64 3 X400	, X402, X403	225869	225869	ERNI Electronics, Inc.
65 1	X405	2383945-2	2383945-2	TE
66 2 X4	106, X408	7Pin Header Molex	436500724	Molex
67 2 X4	107, X409	7Pin Header Samtec	TSM-107-01-S-SV	Samtec
68 1	Z1	PCB 2.0mm	PIA-00120	Power Integrations
69 1	Z301	SF-1206SA-W-FUSE	SF-1206SA250W-2	Bourns

Table 5 – Bill of Materials.

8 Test Setup

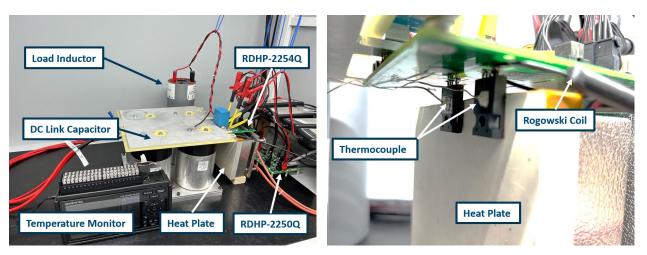

Figure 9 – Test Setup for HV Testing of InnoSwitch with Thermal Setup

Figure 10 – Test Setup for HV Testing at $T_j = 25^{\circ}$ C (configuration shown is for bottom channel testing)

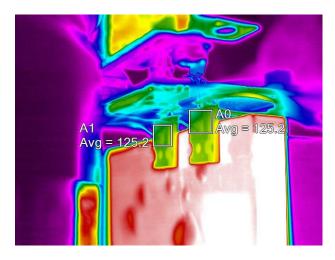

Figure 11 – Test Setup for HV short circuit testing at $T_j = 25$ °C (configuration shown is for bottom channel testing with top channel D-S shorted)

Figure 12 – Test Setup for HV Testing at $T_j = 125$ °C (configuration shown is for top channel testing)

For setup verification of Figure 12, a thermal image was captured prior to each test to confirm the temperature of the SiC MOSFETs. Figure 13 confirms that both power devices are at 125°C.

Additionally, due to the heat plate's location being directly below the PCB, the surface temperature on the secondary side of board was increased to 90°C as shown in Figure 14.

Figure 13 – SiC MOSFET Thermal Image during HV Testing at $T_j = 125$ °C

Figure 14 – PCB Secondary-side Thermal Image during HV Testing at T_j = 125°C

9 Measurement Equipment

The following measurement equipment was used for the test(s):

Туре	Supplier and Part Number	Identifier
Oscilloscope	Yokogawa DLM5058	LVB_OS_04
Differential Probe	Testec TT-SI9110	HVB_DP_05
Passive Probe	Yokogawa 701937 10:1	N.A.
Current Probe	PEM CWTUM/06/R, 50mV/A	ATV_CP_09
Current Probe	PEM CWTUM/6/B, 5mV/A	LVB_CP_02
Current Clamp	Yokogawa 701928 PBC100	ATV_CP_04
Voltage Supply	Rohde & Schwarz HM 7042-5	LVB_PSU_03
High Voltage Supply	Iseg HPp20 757 152	HVB_HVS_04
Frequency Generator	Tektronix AFG31000	LVB_SG_03
Power Meter	Chroma 66205 + A662023	ATV_PM_01
Power Meter	Yokogawa WT310E	ATV_PM_02
Thermal Camera	Fluke TiX580	059045

Table 6 – Measurement Equipment

10 Transformer Specification

- 10.1 InnoSwitch3-AQ Transformer (T350)
- 10.1.1 Electrical Diagram of InnoSwitch3-AQ Transformer

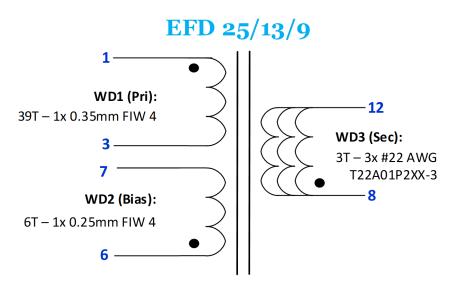


Figure 15 –InnoSwitch3-AQ (T350) Transformer Electrical Diagram

10.1.2 Electrical Specification of InnoSwitch3-AQ Transformer

Parameter	Conditions	Min	Тур	Max	Unit
Power	Output power secondary side			10	W
Input Voltage Vdc	Flyback topology	200	800	850	V
Switching frequency	Flyback topology	28		35	kHz
Duty cycle	Flyback topology	1.9		16.5	%
Np:Ns			13		
Rdc	Primary side		300		mΩ
Rdc	Secondary side		5		mΩ
Coupling capacitance	Primary side to Secondary side, Measured at 1 V _{PK-PK} , 100 kHz frequency, between pin 1 to pin 12, with pins 1 - 3 shorted and pins 12 - 8 shorted at 25 °C			25	pF
Primary inductance	Measured at 1 V _{PK-PK} , 100 kHz frequency, between pin 1 to pin 3, with all other Windings open at 25°C		437		μH
Tolerance	Tolerance of Primary Inductance	-5.0		5.0	%
Primary Leakage inductance	Measured at 1 V _{PK-PK} , 100 kHz frequency, between pin 1 to pin 3, with all other Windings shorted			7	μH

Table 7 – InnoSwitch3-AQ Transformer (T350) Electrical Specification

10.1.3 Build Diagram of InnoSwitch3-AQ Transformer

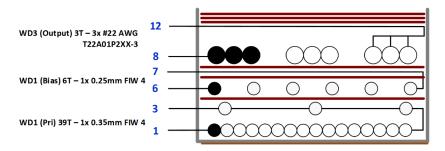


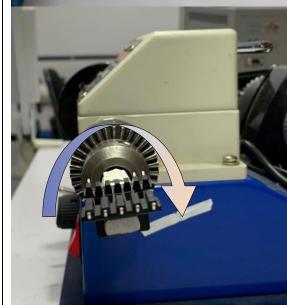
Figure 16 -InnoSwitch3-AQ (T350) Transformer Build Diagram

10.1.4 Materials List of InnoSwitch3-AQ Transformer

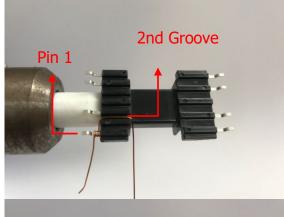
Item	Description	Qty	UOM	Material	Manufacturer	UL No.
[1]	Bobbin: MCT-EFD25-N2 H7+5P	1	PC	Phenolic	MyCoilTech	E41429
[2]	Core: EFD 25/13/9	2	PCS	3C95 (or equivalent)	Ferroxcube	N.A.
[3]	WD1 (Pri): 0.35 mm FIW 4, Class F	2000	mm		Elektrisola	E467608
[4]	WD2 (Bias): 0.25 mm FIW 4, Class F	300	mm	Copper Wire	Elektrisola	E467608
[5]	WD3 (Sec): T22A01P2XX-3, AWG 22 PFA .003"	750	mm		Rubadue	E206198
[6]	3M Polyimide 5413 Amber, width: 0.625in (15.9mm)	300	mm	3M157181 (or equivalent)	3M	E17385

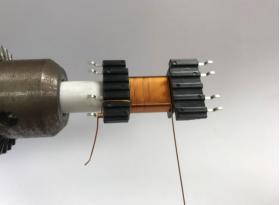
Table 8 – InnoSwitch3-AQ Transformer (T350) Materials List

10.1.5 Winding Instructions of InnoSwitch3-AQ Transformer

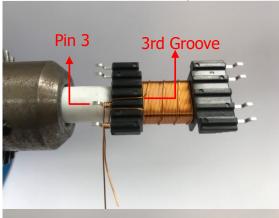

Winding preparation 1

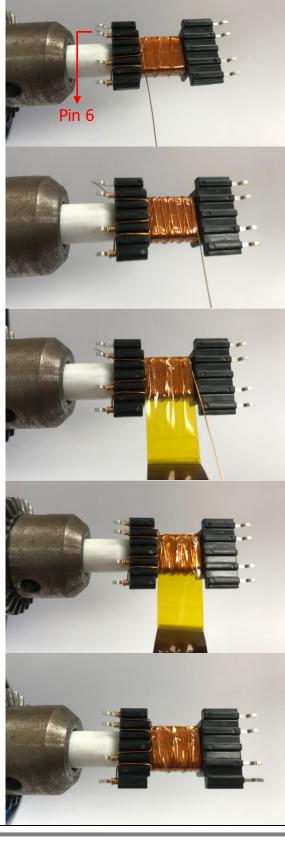
Start by removing the unused pins 2, 4, 5 and 10 of the bobbin (item [1])




Position the bobbin on the mandrel such that the primary side (pins 1-7) of the bobbin is on the left side.

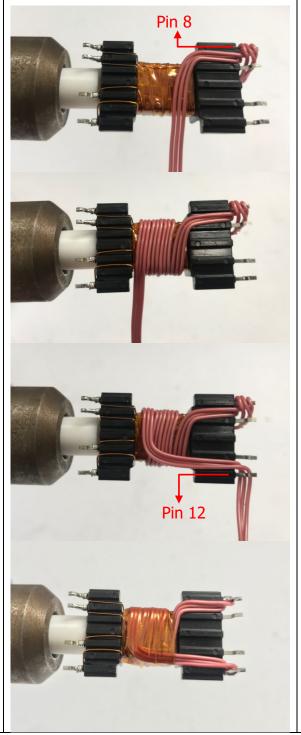
Winding preparation


Winding direction is clockwise direction.


Start at pin 1 through 2nd groove, initially route the wire on the other side of the bobbin. Use a single strand of wire item [3] and wind 36 turns with tight tension, from left to right. This should fit the entire bobbin's width.

WD1: Pri

then wind the remaining 3 turns with tight tension and spread equally across the bobbin width. Terminate at pin 3 by routing on the 3rd groove. Place 1 layer of tape (item [6]) and cut excess wires.

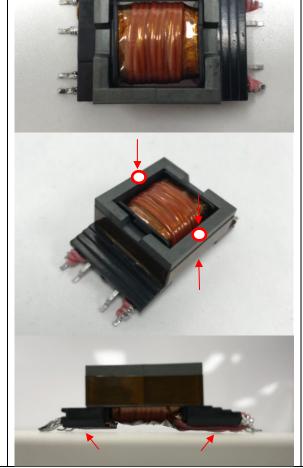


Start at pin 6, passing on the other side of the bobbin temporarily. Using a single strand of item [4], Wind 6 turns with tight tension, from left to right. Spread the winding evenly along the bobbin's width.

Partially apply 1 layer of tape (item [6]) before terminating the winding back to pin 7.

Finish applying 1 layer of tape (item [6]).

WD2: Bias


Use 3 strands of wire item [5] for the Output winding and start it at pin 8.

Wind 3 turns with tight tension, from right to left.

Then terminate the winding at pin 12.

Apply 3 layers of tape (item [6]). Cut excess wires and solder all terminated pins (pin 1, 3, 6, 7, 8, and 12).

WD3: Sec

Gap one of the core halves (item [2]) and fasten the core tightly to get 437 μ H \pm 5% of inductance between pins 1 and 3.

In fastening the core, it is preferred to use glue instead of tape that is used in the illustration (see blue arrows for the preferred gluing points – 2 points on top and 2 points on the bottom.)

Ensure gap between wires and surface especially on the secondary

Table 9 - InnoSwitch3-AQ Transformer (T350) Materials List

Finishing

10.2 SCALE-iDriver Transformer (T300 and T301)

10.2.1 Electrical Diagram of SCALE-iDriver Transformer

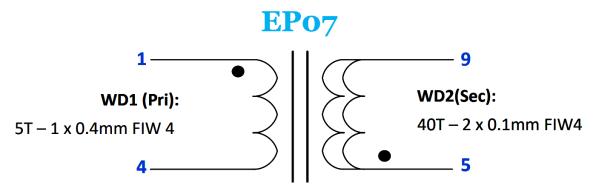


Figure 17 – SCALE-iDriver Transformers (T300 and T301) Electrical Diagram

10.2.2 Electrical Specification of SCALE-iDriver Transformer

Parameter	Conditions	Min	Тур	Max	Unit
Power	Output power secondary side			1	W
Input Voltage Vdc	LLC topology	4.75	5.00	5.25	V
Switching frequency	LLC topology	350	380	400	kHz
Duty cycle	LLC topology		50		%
Ns:Np			8		
Rdc	Primary side			16	mΩ
Rdc	Secondary side			880	mΩ
Coupling capacitance	Primary side to Secondary side, Measured at 1 V _{PK-PK} , 400 kHz frequency, between pin 1 to pin 12, with pins 1 - 3 shorted and pins 12 - 8 shorted at 25 °C			5	pF
Primary inductance	Measured at 1 V _{PK-PK} , 400 kHz frequency, between pin 1 to pin 4, with all other Windings open at 25°C	20	28	36	μН
Primary Leakage inductance	Measured at 1 V _{PK-PK} , 400 kHz frequency, between pin 1 to pin 4, with all other Windings shorted	350	400	450	nH

Table 10 – SCALE-iDriver Transformer (T300 and T301) Electrical Specification

10.2.3 Build Diagram of SCALE-iDriver Transformer

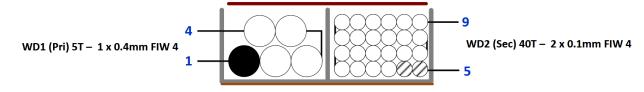


Figure 18 – SCALE-iDriver Transformer (T300 and T301) Build Diagram

10.2.4 Materials List of SCALE-iDriver Transformer

Item	Description	Qty	UOM	Material	Manufacturer	UL No.
[1]	Bobbin: EP07	1	PC	Phenolic	MyCoilTech	E150608
[2]	Core: EP07 3C95	2	PCS	N87 (or equivalent)	TDK	N.A.
[3]	WD1 (Pri): 0.4 mm FIW 4, Class F	120	mm	C 147	Elektrisola	E467608
[4]	WD2 (sec): 0.1 mm FIW 4, Class F	1500	mm	Copper Wire	Elektrisola	E467608
[6]	3M Polyimide 5413 Amber, width: 0.130in (3.3mm)	100	mm	3M157181 (or equivalent)	3M	E17385

Table 11 - SCALE-iDriver Transformer (T300 and T301) Materials List

10.2.5 SCALE-iDriver Transformer

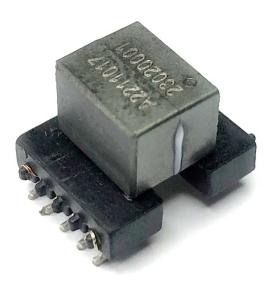


Figure 19 – SCALE-iDriver LLC Transformer (T300 and T301)

11 InnoSwitch3-AQ INN3947CQ Test Data

11.1 Efficiency of InnoSwitch3-AQ

11.1.1 Efficiency vs. Output Power at $T_a = 25$ °C

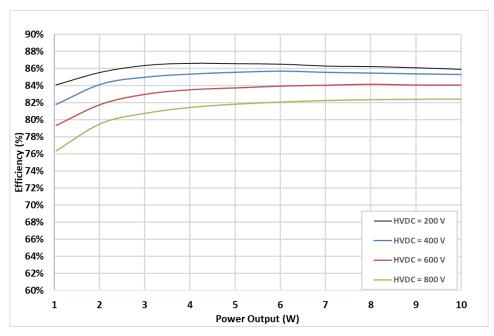


Figure 20 - InnoSwitch Efficiency vs Output Power at Different Input Voltages (25°C Ambient)

11.1.2 Efficiency vs. Output Power at $T_a = 105$ °C

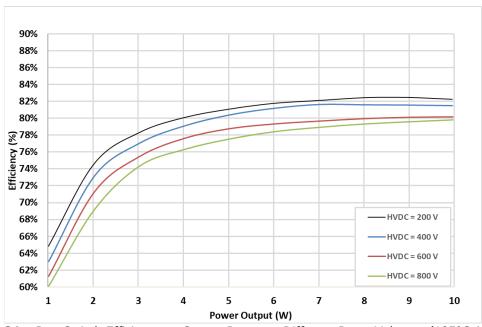


Figure 21 – InnoSwitch Efficiency vs Output Power at Different Input Voltages (105°C Ambient)

11.2 Load Regulation of InnoSwitch3-AQ

11.2.1 Load Regulation vs. Output Power at $T_a = 25$ °C

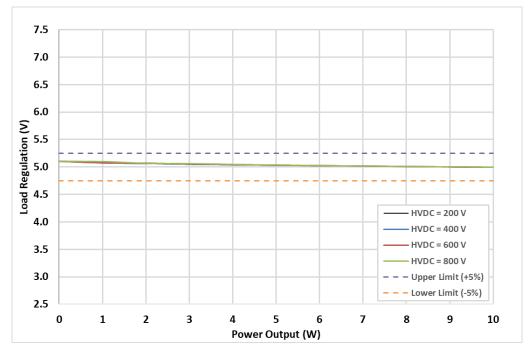


Figure 22 – InnoSwitch Load Regulation vs Output Power at Different Input Voltages (25°C Ambient)

11.2.2 Output Voltage Regulation vs. Output Power at T_a = 105°C

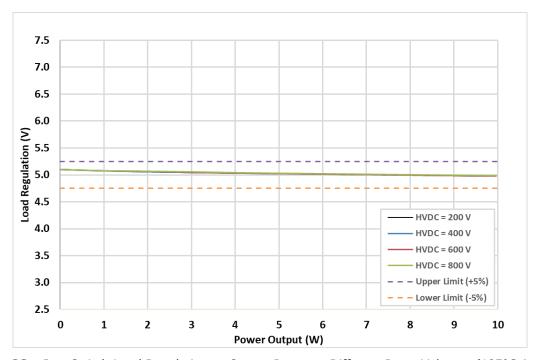


Figure 23 – InnoSwitch Load Regulation vs Output Power at Different Input Voltages (105°C Ambient)

11.3 Waveforms of InnoSwitch3-AQ

11.3.1 Steady-State Waveforms- Normal Operation Component Stress

The following signals were measured for the component stress analysis. A total of 500 statistical samples were recorded for each measurement with the min, max and mean values shown on each oscilloscope captures.

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5 CH6 CH7		CH7	CH8
Signal name	V _{DS} , INNO	Iprimary	V _{DS} , SR FET	Isecondary				
Resolution	variable	500 mA/div	variable	10 A/div	n.a.			
Time Base	10 us/div							

Table 12 – Oscilloscope Setting for Component Stress Analysis

11.3.1.1 Testing at $T_a = 25^{\circ}C$

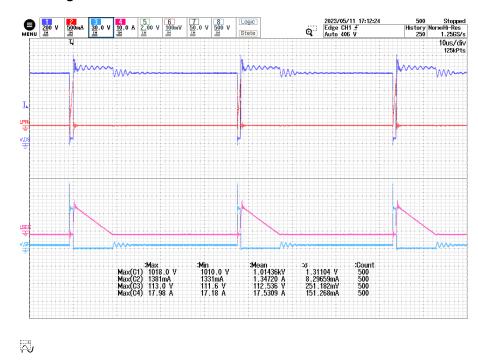


Figure 24 – Component Stress at HVDC = 800 V (25°C Ambient)

Figure 25 – Component Stress at HVDC = 200 V (25°C Ambient)

11.3.1.2 Testing at $T_a = 105$ °C

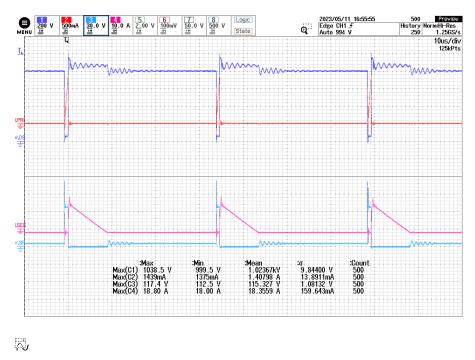


Figure 26 – Component Stress at HVDC = 800 V (105°C Ambient)

Figure 27 – Component Stress at HVDC = 200 V (105°C Ambient)

11.3.1.3 Summary of Data

HVDC	T _{ambient}	V _{DS, INNO}	% Stress	V _{DS} , SR FET	% Stress
200 V	25°C	420.5 V	24.73%	32.8 V	21.86%
	105°C	449.8 V	26.45%	36.8 V	24.53%
200.1/	25°C	1018.0 V	59.88%	113.0 V	75.33%
800 V	105°C	1038.5 V	61.08%	117.4 V	78.26%

Table 13 – Summary of Critical Component Voltage Stresses

11.3.2 Steady-State Waveforms- Short Circuit Response of InnoSwitch3-AQ

The following signals were monitored during an output short simulation at connector X405. The expected response is for the unit to enter AR (auto restart) mode for 1.8 s repeatedly until the short is removed and the unit shall be able to recover and operate normally.

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
Signal name	V _{DS} , INNO	${ m I}_{\sf PRIMARY}$	V _{DS} , SR FET	ISECONDARY	V _{OUT}		n n	
Resolution	variable	500 mA/div	variable	10 A/div	2 V/div	n.a.		
Time Base				1 s/div				

Table 14 – Oscilloscope Setting for Short Circuit Response

1.1.1.1 Testing at $T_a = 25$ °C

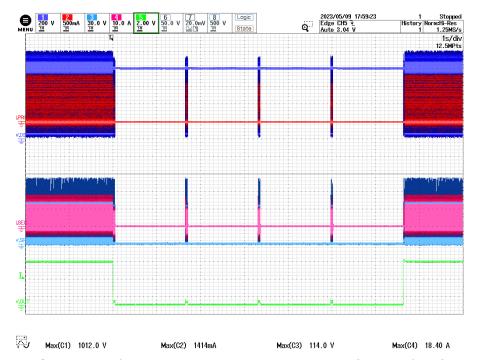


Figure 28 – Short Circuit Response at HVDC = 800 V (25°C Ambient)

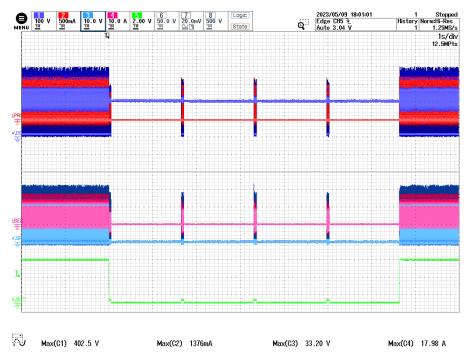


Figure 29 – Short Circuit Response at HVDC = 200 V (25°C Ambient)

1.1.1.2 Testing at $T_a = 105$ °C

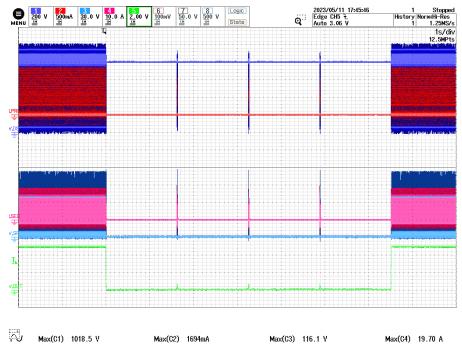


Figure 30 – Short Circuit Response at HVDC = 800 V (105°C Ambient)

Figure 31 – Short Circuit Response at HVDC = 200 V (105°C Ambient)

11.3.3 Steady-State Waveforms- Output Voltage Ripple of InnoSwitch3-AQ

The output voltage ripple waveform at full load was measured at the output terminals X405 using the ripple measurement probe with decoupling capacitor. A modified oscilloscope test probe must be utilized to reduce spurious signals due to pick-up. Details of the probe modification are provided in Figure 32 and Figure 33 below. A CT2708 probe adapter is affixed with a 1 μF / 50 V ceramic capacitor placed in parallel across the probe tip. A twisted pair of wires kept as short as possible is soldered directly to the probe and the output terminals.

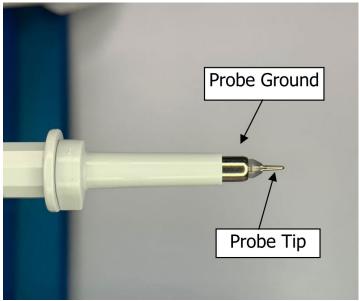
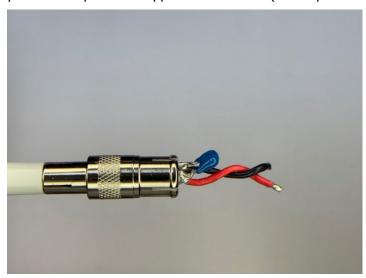



Figure 32 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed.)

Figure 33 – Oscilloscope Probe with Cal Test CT2708 BNC Adapter. (Modified with Wires for Ripple Measurement, and a Parallel Decoupling Capacitor Added.)

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
Signal name		n.a.			VOUT, RIPPLE			
Resolution					20 mV/div (AC)	n.a.		
Time Base	20 ms/div, 100 us/div (magnified snapshot)							

Table 15 – Oscilloscope Setting for Output Voltage Ripple

11.3.3.1 Testing at $T_a = 25^{\circ}C$

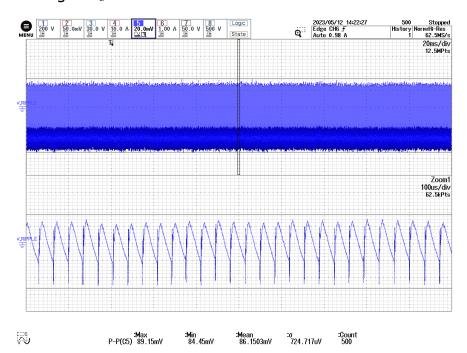


Figure 34 – Output Voltage Ripple During Full Load at HVDC = 800 V (25°C Ambient)

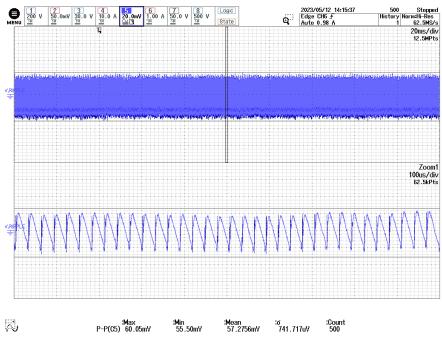


Figure 35 – Output Voltage Ripple During Full Load at HVDC = 200 V (25°C Ambient)

11.3.3.2 Testing at $T_a = 105$ °C

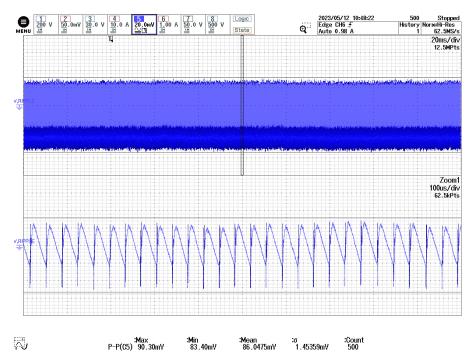
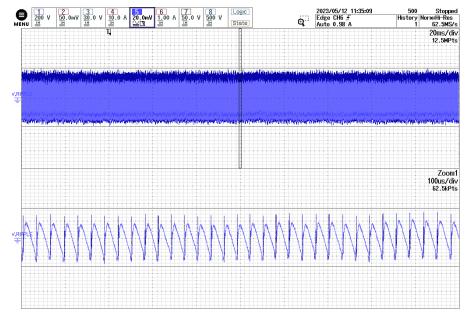



Figure 36 – Output Voltage Ripple During Full Load at HVDC = 800 V (105°C Ambient)

P-P(c5) Max P-P(c5) 69.45mV Min 64.35mV Mean 66.0370mV 769.500uV 500 Count 500 Figure 37 - Output Voltage Ripple During Full Load at HVDC = 200 V (105°C Ambient)


11.3.4 Steady-State Waveforms- Output Load Transient Response of InnoSwitch3-AQ

The following signals were monitored during a 10% to 90% load transient. The unit was tested with 20 Hz and 5 kHz dynamic loading frequency with a load slew rate of 100 mA/ μ s.

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
Signal name					Vout, RIPPLE	Іоит	_	
Resolution		n.a.			100 mV/div (AC)	2 V/div	n.a.	
Time Base		20 ms/div						

Table 16 – Oscilloscope Setting for Output Load Transient

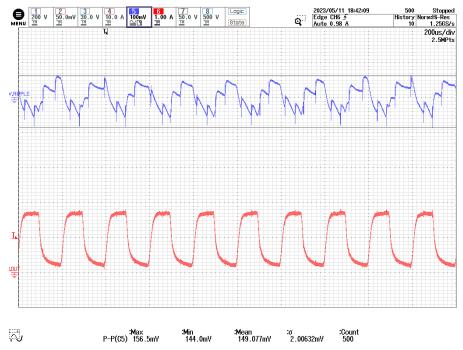

11.3.4.1 Testing at $T_a = 25^{\circ}C$

Figure 38 – 10% to 90% Load Transient at 20 Hz Dynamic Loading Frequency and HVDC = 800 V (25°C Ambient)

Figure 39 - 10% to 90% Load Transient at 20 Hz Dynamic Loading Frequency and HVDC = 200 V (25°C Ambient)

Figure 40 – 10% to 90% Load Transient at 5 kHz Dynamic Loading Frequency and HVDC = 800 V (25°C Ambient)

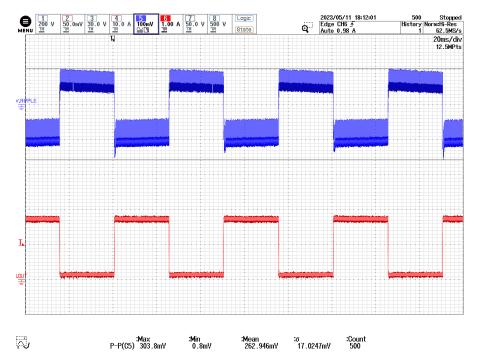



Figure 41 – 10% to 90% Load Transient at 5 kHz Dynamic Loading Frequency and HVDC = 200 V (25°C Ambient)

11.3.4.2 Testing at $T_a = 105^{\circ}C$

Figure 42 – 10% to 90% Load Transient at 20 Hz Dynamic Loading Frequency and HVDC = 800 V (105°C Ambient)

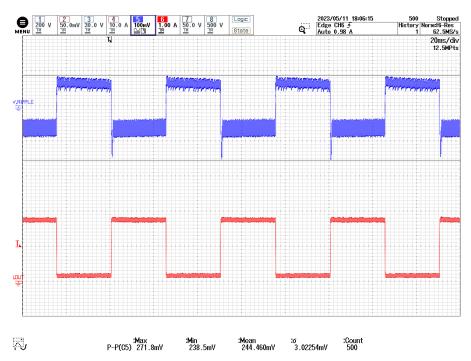


Figure 43 – 10% to 90% Load Transient at 20 Hz Dynamic Loading Frequency and HVDC = 200 V (105°C Ambient)




Figure 44 – 10% to 90% Load Transient at 5 kHz Dynamic Loading Freq and HVDC = 800 V (105°C Ambient)

Figure 45 – 10% to 90% Load Transient at 5 kHz Dynamic Loading Freq and HVDC = 200 V (105°C Ambient)

11.3.5 Start-Wp Waveforms- Start-up Full Load Response of InnoSwitch3-AQ

The following signals were monitored during a power supply start-up under 10 W full load condition. Measurements were taken by hot plugging-in the positive rail of the fully charged DC link capacitor to the HV+ of the unit under test with its output configured at full load. Inrush current was limited by adding a 10 Ω series resistor in between.

The noticeable delay (~82 ms) between the start-up and the initial switching of the InnoSwitch is due to the "wait and listen" function of the IC.

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
Signal name	V _{DS} , INNO	${ m I}_{\sf PRIMARY}$	V _{DS} , SR FET	ISECONDARY	V _{OUT}		HVDC	
Resolution	variable	500 mA/div	variable	10 A/div	2 V/div	n.a.	variable	n.a.
Time Base				50 ms/div				

Table 17 – Oscilloscope Setting for Start-Up Full Load

11.3.5.1 Testing at $T_a = 25^{\circ}C$

Figure 46 – Start-Up Full Load at HVDC = 800 V (25°C Ambient)

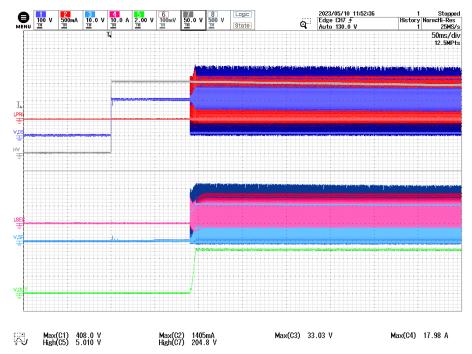


Figure 47 – Start-Up Full Load at HVDC = 200 V (25°C Ambient)

11.3.5.2 Testing at $T_a = 105$ °C

Figure 48 – Start-Up Full Load at HVDC = 800 V (105°C Ambient)

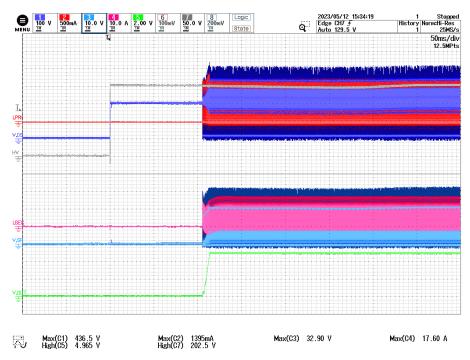


Figure 49 – Start-Up Full Load at HVDC = 200 V (105°C Ambient)

11.3.6 Start-Up Waveforms- Start-Up Short Response of InnoSwitch3-AQ

The following signals were monitored during a power supply start-up under short circuit condition at the output terminal X405. Measurements were taken by hot plugging-in the positive rail of the fully charged DC link capacitor to the HV+ of the unit under test with its output shorted. Inrush current was limited by adding a $10~\Omega$ series resistor in between.

The expected response is for the unit to start-up under AR (auto restart) mode for 1.8s repeatedly until the short is removed and the unit shall be able to start-up and operate normally.

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
Signal name	V _{DS} , INNO	IPRIMARY	V _{DS} , SR FET	ISECONDARY	Vout		HVDC	
Resolution	variable	500 mA/div	variable	10 A/div	2 V/div	n.a.	variable	n.a.
Time Base				1 s/div				

Table 18 - Oscilloscope Setting for Start-Up Short

11.3.6.1 Testing at $T_a = 25^{\circ}C$

Figure 50 – Start-Up Short at HVDC = 800 V (25°C Ambient)

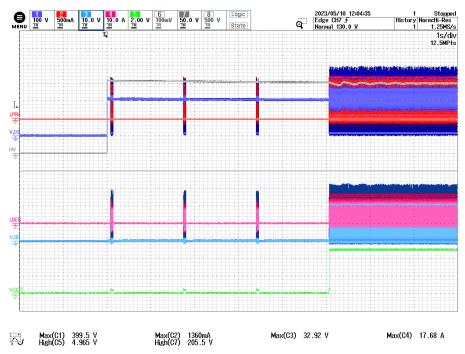


Figure 51 – Start-Up Full Short at HVDC = 200 V (25°C Ambient)

11.3.6.2 Testing at $T_a = 105$ °C

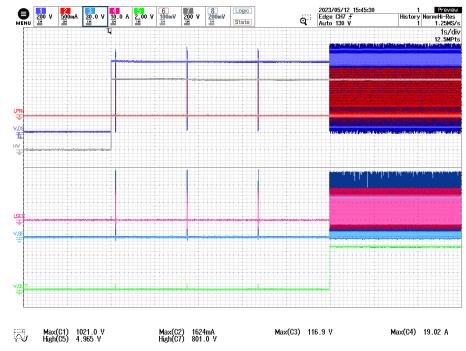


Figure 52 – Start-Up Short at HVDC = 800 V (105°C Ambient)

Figure 53 – Start-Up Short at HVDC = 200 V (105°C Ambient)

12 Thermals of InnoSwitch3-AQ

12.1 Thermal Data at T_a = 25°C

The unit was soaked for at least 1 hour under full load condition to allow component temperatures to settle.

Component	HV	HVDC			
Component	200 V	800 V			
Common Mode Choke	39.6 °C	40.6 °C			
Primary Snubber Resistor	46.9 °C	45.6 °C			
InnoSwitch3-AQ	39.8 °C	46.7 °C			
Transformer	42.5 °C	50.5 °C			
SR FET	40.5 °C	45.2 °C			
Secondary Snubber Resistor	38.5 °C	43.2 °C			
Output Capacitor	33.8 °C	35.5 °C			

Table 19 – Summary of Component Temperature in at Different HVDC Input (25°C Ambient)

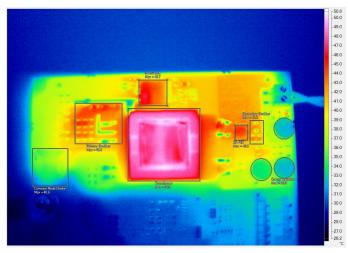


Figure 54 – Component Temperature at HVDC = 800 V (25°C Ambient)

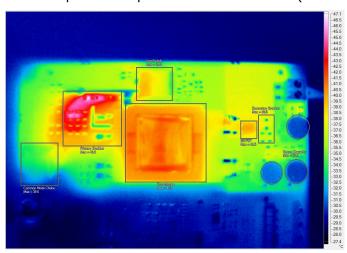


Figure 55 – Component Temperature at HVDC = 200 V (25°C Ambient)

12.2 Thermal Data at T_a = 105°C

The unit was placed inside a temperature-controlled oven as shown in Figure 9 and soaked for at least 1 hour under full load condition to allow component temperatures to settle. Temperature was measured using a thermocouple.

Component	HVDC			
Component	200 V	800 V		
Common Mode Choke	115.67 °C	116.61 °C		
Primary Snubber Resistor	124.73 °C	122.41 °C		
InnoSwitch3-AQ	121.12 °C	124.64 °C		
Transformer	120.35 °C	122.92 °C		
SR FET	120.93 °C	122.01 °C		
Secondary Snubber Resistor	119.84 °C	121.50 °C		
Output Capacitor	115.17 °C	115.91 °C		

Table 20 – Summary of Component Temperature in at Different HVDC Input (105°C Ambient)

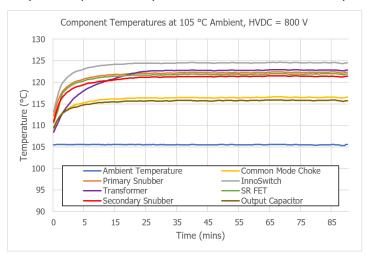


Figure 56 – Component Temperature at HVDC = 800 V (105°C Ambient)

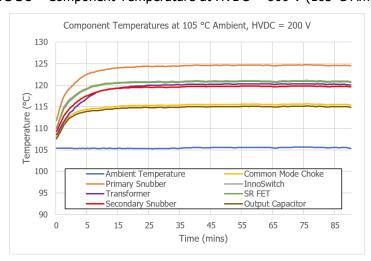


Figure 57 – Component Temperature at HVDC = 200 V (105°C Ambient)

13 SCALE-iDriver SIC1182KQ Test Data

13.1 General Conditions / Remarks

The following points should be considered:

- The test power device is onsemi's NVH4L020N120SC1 SiC MOSFET.
- The voltage class of the power devices is $V_{CE, max} = 1200 \text{ V}$ and is the absolute maximum rating.
- The allowed peak voltage during turn-off transient shall be V_{CE, pk} ≤ 1150 V for testing.
- The nominal load current of the power device is $I_{nom}=60$ A with $R_{DS,on}=20$ m Ω (typical value at 25°C).
- The measured stray inductance of the entire test setup, including PCB trace and power device pin, during turn-off for the bottom-channel SiC-MOSFET is around $L_{\sigma,bottom} \approx 89$ nH.
- The measured stray inductance of the entire test setup, including PCB trace and power device pin, during turn-off for the top-channel SiC-MOSFET is around $L_{\sigma,top} \approx 87$ nH.
- The DC-link voltage is $V_{DC} = 800 \text{ V}$
- The primary-side supply voltage comes from a regulated flyback converter controlled by the InnoSwitch which has a nominal value of $V_{CC} = 5 \text{ V}$.
- The secondary-side supply voltage of each gate driver ICs comes from an unregulated LLC converter which has a nominal value of $V_{VISO-COM} = 20 \text{ V}$.
- The gate driving voltage is set to $V_{GE} = +15 \text{ V} / -5 \text{ V}$ (nominal value).
- All high voltage measurements on the power device have been carried out directly on its pins.
- All high voltage data presented in this report uses the secondary side setting (i.e., AROC Chain, Gate Resistor) given in chapter 13.2.

13.2 Secondary Side Gate Driver Settings

To achieve the shown test results within chapters 13.5 and 13.6, components on the secondary side should be adjusted as listed below.

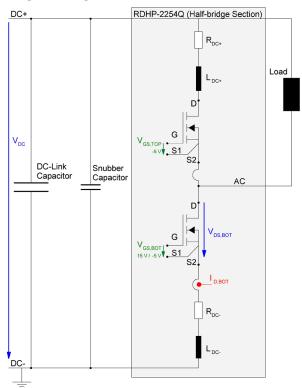
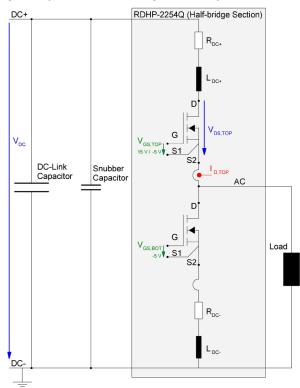

Function	Designator	Value	Change Reason
DUT	Qx00	NVH4L020N120SC1	Power device to be tested
AMC BJT	Qx02	PBSS5140T	BJT for External Active Miller Clamping
R _{G,off}	Rx10, Rx11	9.1 Ω	Required for safe turn-off of power device
R _{G,on}	Rx08, Rx19	6.8 Ω	Required for safe turn-on of power device
dv/dt Capacitor	Rx01 Rx06	1 pF	Required for support of AROC function
Rsense	R200	11 kΩ	AROC adjustment on top channel power device
Csense	C213	10 pF	Required for controlling the effects of the dv/dt capacitor on top channel power device

Table 21 – Summary of Component Temperature in at Different HVDC Input (105°C Ambient)


Note that the configuration listed in Table 21 is only applicable when using NVH4L020N120SC1 as the power device. These settings may not work for other power devices with different part numbers. HV testing should be repeated accordingly to confirm if the new power device will operate within its maximum ratings.

13.3 Equivalent Half-bridge Circuit for High Voltage Testing

Shown in Figure 58 and Figure 59 are the equivalent circuit for turn-on and turn-off measurement of the bottom and top channel, respectively. The snubber capacitor used for all high voltage tests is TDK's B32656S1684K563 (0.68 μ F 1.6 kV 10%) Film Capacitor.

Figure 58 – Equivalent circuit for Bottom Channel measurements

Figure 59 – Equivalent circuit for Top Channel measurements

13.4 DC/DC Converter of Gate Drive Unit (GDU)

The following low voltage measurements were carried out at $T_a = 25$ °C.

13.4.1 Efficiency and Voltage Output of DC/DC Converter of GDU

The secondary-side supply voltage comes from an unregulated LLC converter as shown in Figure 4. Each channel is using an LLC transformer shown in Figure 19 which can deliver up to 1 W of power capacity for each channel. and graphs the efficiency and VISO-COM voltage vs the total output power on the secondary-side. Note that, since this is an unregulated power supply, the VISO-COM voltage regulation may vary across boards. This will depend on the tolerances of the transformer. Nevertheless, VISO-COM voltage regulation shall be within 18 V to 21 V with a nominal value of 20 V.

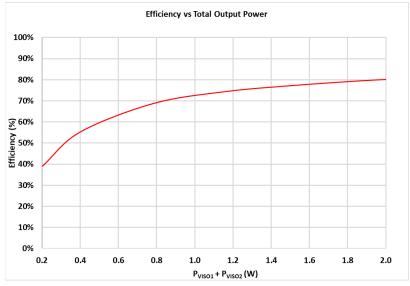


Figure 60 – Efficiency vs Total Output Power of LLC Converter

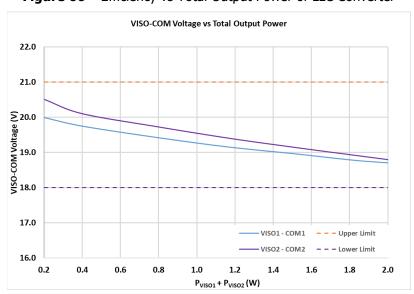


Figure 61 - VISO-COM Voltage vs Total Output Power

13.5 High Voltage Double Pulse Tests of Half-Bridge

The data shown in the following sub-chapters are achievable using the secondary side setting described in chapter 13.2.

The following signals were measured during the turn-on and turn-off measurements.

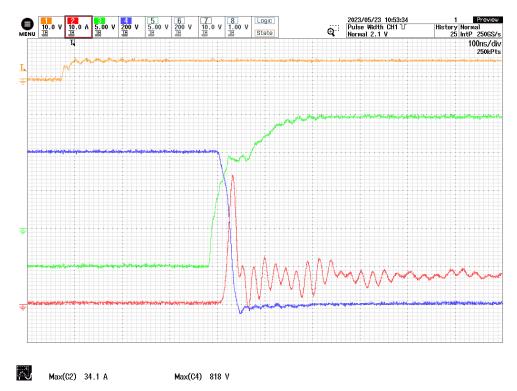
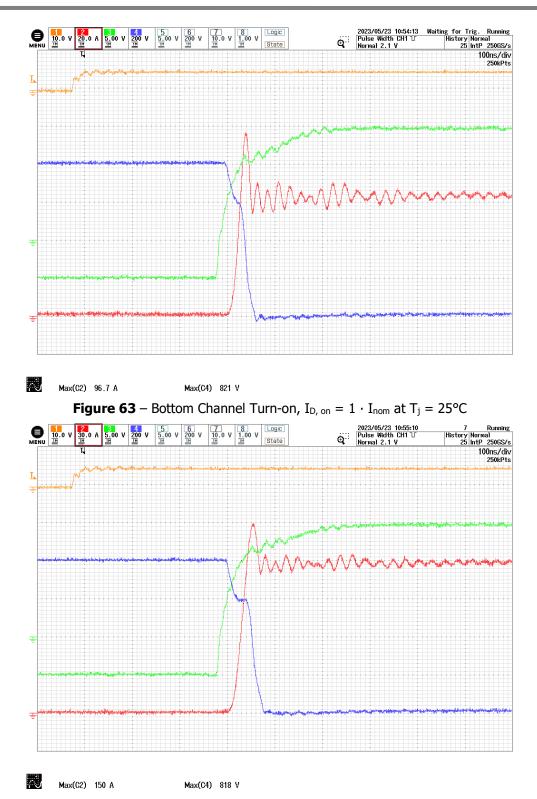

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	
Signal name	IN _x	$\mathrm{I}_{D,x}$	$V_{GS,x}$	$V_{DS,x}$	n.a.				
Resolution	10 V/div	variable	5 V/div	200 V/div					
Time Base		100 ns/div							

Table 22 – Oscilloscope Setting for Turn-on and Turn-off Measurements


13.5.1 Testing at Tj = 25 °C

The following measurements were carried out with SiC MOSFETs at $T_j = 25$ °C using test set up shown in Figure 10.

13.5.1.1 Bottom Channel Turn-on Measurements

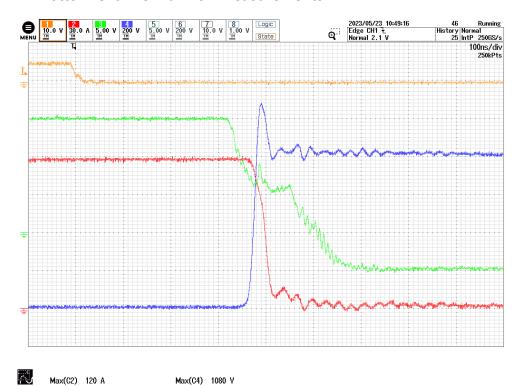


Figure 62 – Bottom Channel Turn-on, $I_{D, on} = 0.1 \cdot I_{nom}$ at $T_j = 25$ °C

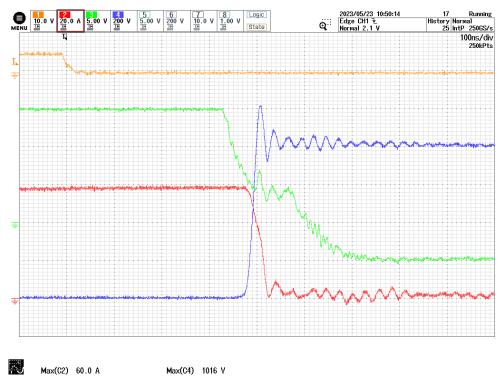


Figure 64 – Bottom Channel Turn-on, $I_{D, on} = 2 \cdot I_{nom}$ at $T_j = 25$ °C


13.5.1.2 Bottom Channel Turn-off Measurements

Figure 65 – Bottom Channel Turn-off, $I_{D, \text{ off}} = 2 \cdot I_{\text{nom}}$ at $T_j = 25^{\circ}\text{C}$

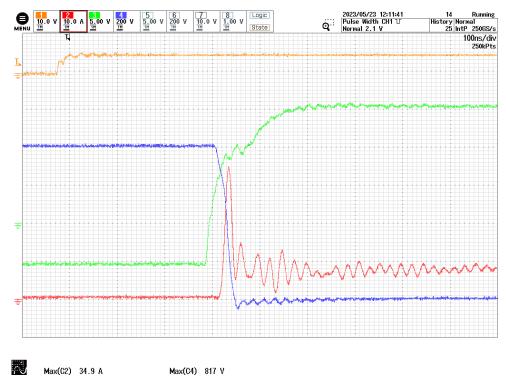


Figure 66 – Bottom Channel Turn-off, $I_{D, off} = 1 \cdot I_{nom}$ at $T_j = 25^{\circ}C$

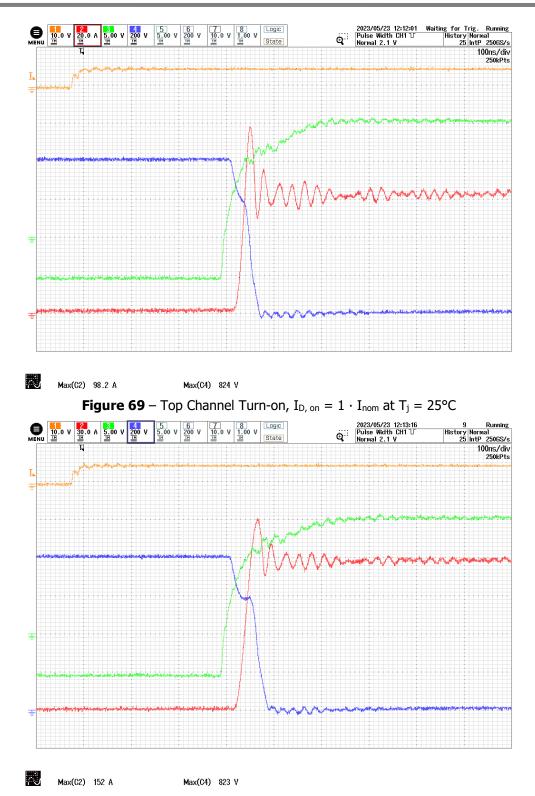


Figure 67 – Bottom Channel Turn-off, $I_{D, \text{ off}} = 0.1 \cdot I_{\text{nom}}$ at $T_j = 25^{\circ}\text{C}$

13.5.1.3 Top Channel Turn-on Measurements

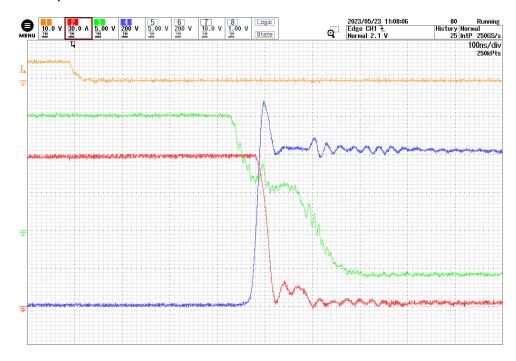
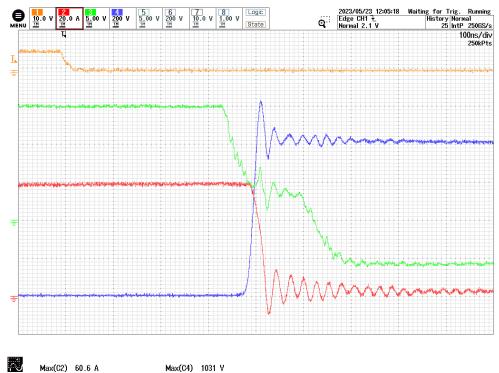


Figure 68 – Top Channel Turn-on, $I_{D, on} = 0.1 \cdot I_{nom}$ at $T_j = 25^{\circ}C$


Figure 70 – Top Channel Turn-on, $I_{D, on} = 2 \cdot I_{nom}$ at $T_j = 25^{\circ}C$

13.5.1.4 Top Channel Turn-off Measurements

Max(C2) 121 A Max(C4) 1080 V

Figure 71 – Top Channel Turn-off, $I_{D, off} = 2 \cdot I_{nom}$ at $T_j = 25^{\circ}C$

Figure 72 – Top Channel Turn-off, $I_{D, off} = 1 \cdot I_{nom}$ at $T_j = 25^{\circ}C$

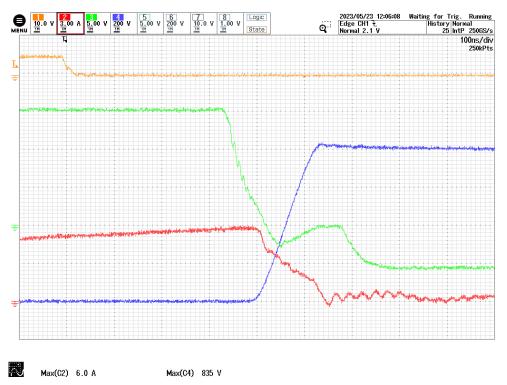
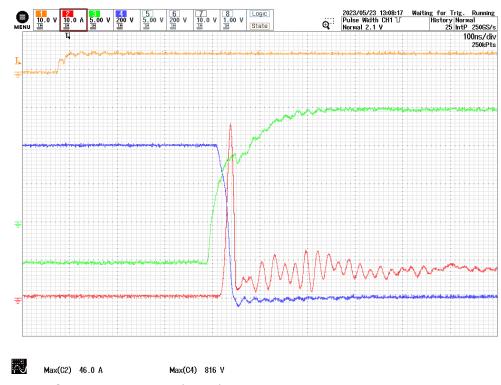
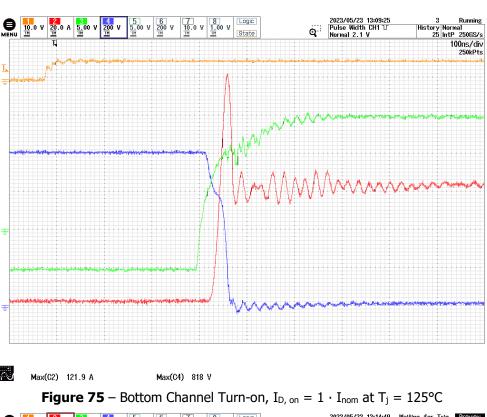


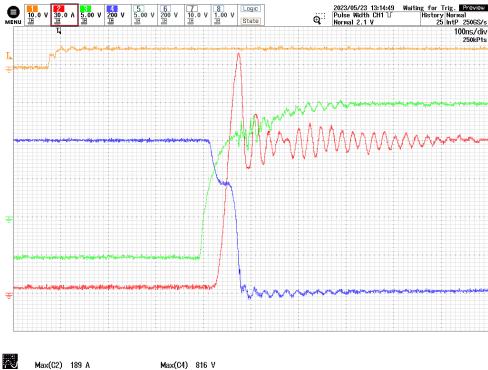
Figure 73 – Top Channel Turn-off, $I_{D, off} = 1 \cdot I_{nom}$ at $T_j = 25^{\circ}C$

13.5.2 Testing at Tj = 125 °C

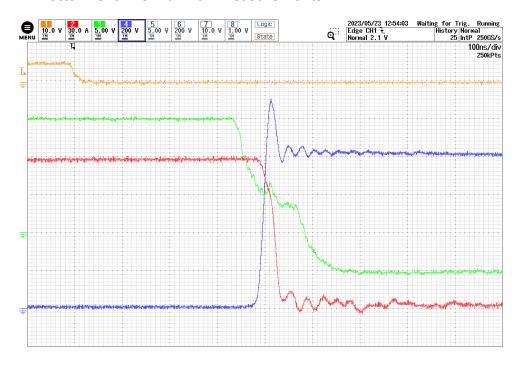

The following measurements were carried out with SiC MOSFETs at $T_j = 125^{\circ}$ C using test set up shown in Figure 12.

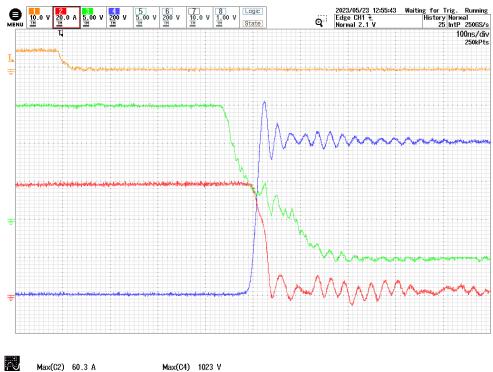
These signals were measured during the turn-on and turn-off measurements.


Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8		
Signal name	IN _x	$\mathrm{I}_{D,x}$	$V_{GS,x}$	$V_{DS,x}$						
Resolution	10 V/div	variable	5 V/div	200 V/div	n.a.					
Time Base		100 ns/div								


Table 23 – Oscilloscope Setting for Turn-on and Turn-off Measurements

13.5.2.1 Bottom Channel Turn-on Measurements

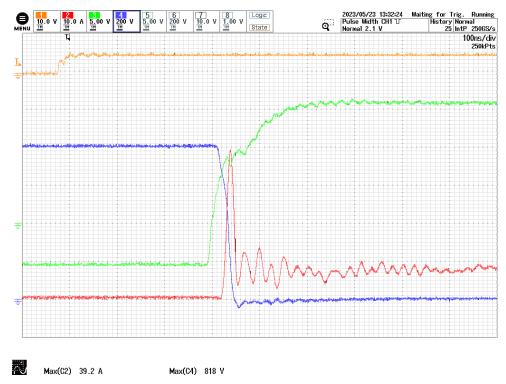

Figure 74 – Bottom Channel Turn-on, $I_{D, on} = 0.1 \cdot I_{nom}$ at $T_j = 125$ °C


Figure 76 – Bottom Channel Turn-on, $I_{D, \text{ on}} = 2 \cdot I_{\text{nom}}$ at $T_j = 125^{\circ}\text{C}$

Bottom Channel Turn-off Measurements 13.5.2.2

Max(C2) 120 A Max(C4) 1102 V

Figure 77 – Bottom Channel Turn-off, $I_{D, off} = 2 \cdot I_{nom}$ at $T_j = 125$ °C


Figure 78 – Bottom Channel Turn-off, $I_{D, off} = 1 \cdot I_{nom}$ at $T_j = 125^{\circ}C$

Max(C4) 1023 V

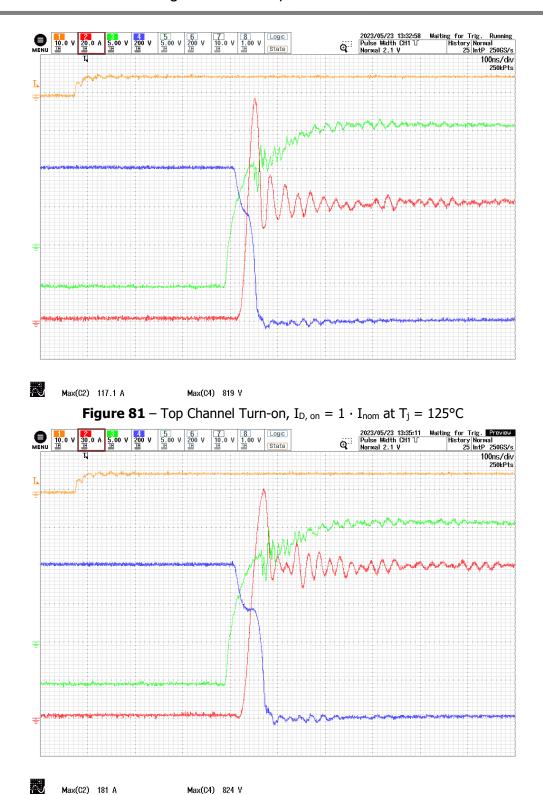


Figure 79 – Bottom Channel Turn-off, $I_{D, \text{ off}} = 0.1 \cdot I_{\text{nom}}$ at $T_j = 125^{\circ}\text{C}$

13.5.2.3 Top Channel Turn-on Measurements

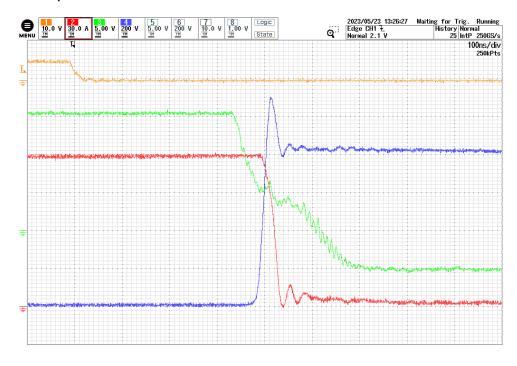
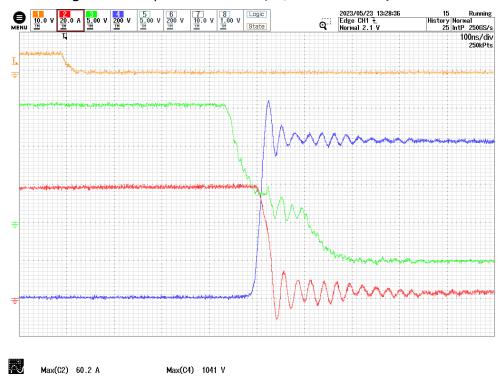
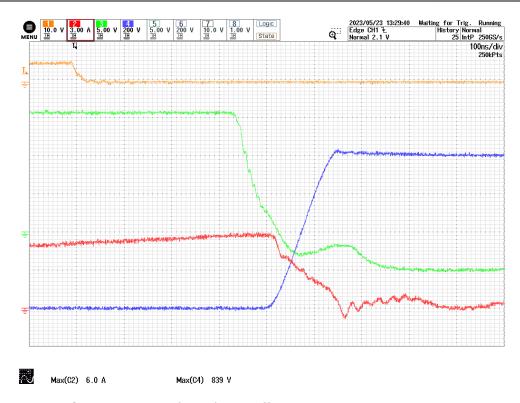


Figure 80 – Top Channel Turn-on, $I_{D, on} = 0.1 \cdot I_{nom}$ at $T_j = 125$ °C


Figure 82 – Top Channel Turn-on, $I_{D, on} = 2 \cdot I_{nom}$ at $T_j = 125$ °C

13.5.2.4 Top Channel Turn-off Measurements



Max(C2) 121 A Max(C4) 1100 V

Figure 83 – Top Channel Turn-off, $I_{D, off} = 2 \cdot I_{nom}$ at $T_j = 125$ °C

Figure 84 – Top Channel Turn-off, $I_{D, off} = 1 \cdot I_{nom}$ at $T_j = 125$ °C

Figure 85 – Top Channel Turn-off, $I_{D, \, \text{off}} = 0.1 \cdot I_{\text{nom}}$ at $T_j = 125^{\circ}\text{C}$

13.6 High Voltage Short Circuit Tests of Half-Bridge

The data shown in the following sub-chapters are achievable using the secondary side setting described in chapter 13.2.

The following signals were measured during short circuit measurements.

Oscilloscope Channel	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
Signal name	IN_x	${ m I}_{\sf D,x}$	$V_{GS,x}$	$V_{DS,x}$	n.a.		SO	
Resolution	10 V/div	200 A/div	5 V/div	200 V/div			10 V/div	n.a.
Time Base				500 ns/div				

Table 24 – Oscilloscope Setting for Short Circuit Measurements

13.6.1 Testing at $T_j = 25$ °C

The following measurements were carried out with SiC MOSFETs at $T_j = 25^{\circ}$ C using test set up shown in Figure 11.

13.6.1.1 Short Circuit Measurements

Figure 86 – Bottom Channel Short Circuit Response at $T_j = 25$ °C, measured $t_{sc} = 1.547 \mu s$

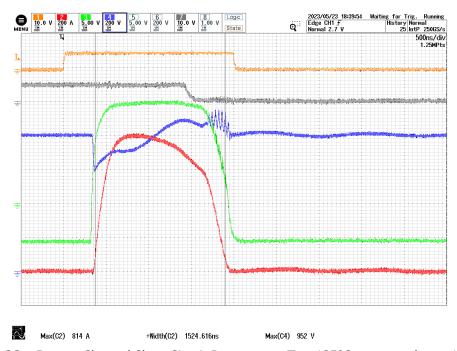
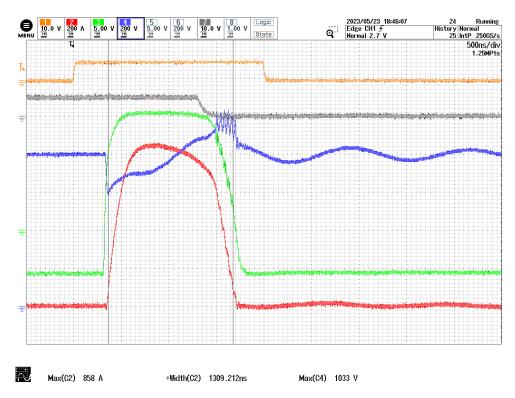


Figure 87 – Top Channel Short Circuit Response at $T_j = 25$ °C, measured $t_{sc} = 1.335 \mu s$


13.6.2 Testing at Tj = 125 °C

The following measurements were carried out with SiC MOSFETs at $T_j = 125$ °C using test set up shown in Figure 12 with short circuit simulation shown in Figure 11.

13.6.2.1 Short Circuit Measurements

Figure 88 – Bottom Channel Short Circuit Response at $T_j = 125$ °C, measured $t_{sc} = 1.524 \mu s$

Figure 89 – Top Channel Short Circuit Response at $T_j = 125$ °C, measured $t_{sc} = 1.309 \mu s$

14 Revision History

Date	Author	Revision	Description and changes	Reviewed
15-Jun-23	CO	1.0	Initial Release.	MH

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALEiDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480

Americas: +1-408-414-9621 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No.

North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323

e-mail: chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057

Phone: +86-755-8672-8689 e-mail: chinasales@power.com

GERMANY (AC-DC/LED Sales)

Einsteinring 24 85609 Dornach/Aschheim Germany

Tel: +49-89-5527-39100 e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)

HellwegForum 3 59469 Ense Germany

Tel: +49-2938-64-39990 e-mail: *igbt-*

driver.sales@power.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India

Phone: +91-80-4113-8020 e-mail: indiasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI)

Phone: +39-024-550-8701 e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohokuku

Yokohama-shi, Kanagawa 222-0033 Japan

Phone: +81-45-471-1021 e-mail: japansales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu,

Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160

singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C.

Phone: +886-2-2659-4570

e-mail:

taiwansales@power.com

UK

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG

Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com